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Microfracture beneath point indentations 
in brittle solids 
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The microfracture patterns observed around point indentations in brittle solids are 
investigated. A description is first given of the stress field in an elastic half-space loaded 
normally at a point in its surface. This field is then used as a basis for analysing the crack 
geometry. A localized zone of irreversible deformation forms about the contact point, 
thereby removing a singularity in the elasticity solutions and providing nucleation centres 
for the ensuing microcracks. Generally, two main types of 'vent' cracks are observed to 
propagate from the deformation zone: median vents, formed during indenter loading, 
spread downward below the point of contact on planes of symmetry, and lateral vents, 
formed during unloading, spread sideways toward the specimen surface. Of these, the 
median vent is relatively well-behaved, and is amenable to standard fracture-mechanics 
analysis. From such an analysis we derive the means for predetermining, in principle, the 
depth of fracture damage under given point loading conditions. The significance of the 
results in relation to important practical applications, such as glass cutting and surface 
fragmentation processes, is discussed. 

1. In t roduct ion 
Point-indentation techniques, long used as a 
basis for routine hardness testing (e.g. Vickers 
pyramid test, Knoop test), are finding increasing 
application in the study of the mechanical 
properties of brittle solids. The particular 
attraction of these techniques lies in their unique 
simplicity as a nondestructive means for 
producing regions of high stress intensity in a 
specimen. Moreover, the indentation stress 
field is dominated by components of shear and 
hydrostatic compression, a situation favourable 
to the operation of such irreversible deformation 
modes as plastic flow and structuraldensification; 
it is, of course, this irreversible deformation 
which accounts for the residual impression left 
by the indenter. The same modes may never have 
an opportunity to manifest themselves in a more 
conventional mechanical test arrangement, for 
it is difficult to safeguard against premature 

brittle failure of the test-piece due to the inevi- 
table presence of substantial tensile stresses, 
either directly applied or spurious. Indeed, for 
the most brittle solids the point-indentation test 
affords the only practical method for charac- 
terizing yield, or densification, parameters. 

However, while the component of tension in 
the indentation field itself is relatively small, it is 
by no means insignificant. Thus, depending on 
the degree of brittleness of a given material, one 
might expect to find a certain amount of micro- 
cracking around the immediate deformation 
zone. Observations of indentation-induced 
microfracture are in fact commonplace in such 
solids as the diamond-structure crystals, silicates 
(e.g. quartz, fused silica), ceramics (e.g. sap- 
phire), and intrinsically strong metals and 
alloys (e.g. tungsten, nitrides). In most applica- 
tions of indentation testing, the incidence of 
microcracking is regarded as having little more 
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than nuisance value because of disruptive effects 
on the overall deformation pattern. But there are 
some areas of  materials research in which these 
fracture processes have a vital bearing. One such 
area concerns the use of  concentrated loading 
techniques for introducing well-defined cracks 
into a solid in a controlled manner;  this is of  
particular relevance to glass-cutting operations, 
where a sharp scribing tool is used to produce a 
linear starting crack. Another area relates to the 
mechanisms ofcomminution (particle fragmenta- 
tion) of brittle materials; here, the indentation 
test may be used as a useful model system for 
simulating individual damage events in abrasion, 
grinding and erosion processes. 

It  is the purpose of this paper to investigate 
the mechanics of  point-indentation micro- 
fracture. A complete description would embrace 
both initiation and propagation stages of  crack 
growth. The initiation stage is a complex 
problem in its own right, involving such factors 
as deformation mode (which may in turn depend 
on the specimen history and microstructure), 
indenter geometry, etc. ; we shall avoid explicit 
consideration of this issue, assuming only that 
suitable initiation centres do exist within the 
indentation zone. The ensuing propagation 
stage, on the other hand, is readily amenable to a 
more or less standard fracture mechanics analysis 
in terms of a well-defined applied stress field and 
fracture surface energy parameter;  with this 
approach we can explain the essential features of  
microcrack patterns observed in indented glass 
and other brittle materials. 

2. Stress field beneath ideal pointed 
indenter 

We consider the stress situation in an elastic 
half-space subjected to a normal point load P, 
Fig. 1. This is the so-called Boussinesq problem, 
the solution of which is summarized in the 
Appendix. For an isotropic material of  Poisson's 
ratio v, the stress components in the curvilinear 
coordinate system of Fig. 1 are seen to assume 
the simple, general form 

0`ij = (PI,~R9 [ I i ; ( r  �9 (1)  

Thus, at fixed indenter load, the stress field varies 
as the inverse square of  the radial distance f rom 
the contact point, times an independent angular 
term. 

The relevant features of the Boussinesq stress 
field are illustrated in Figs. 2 to 4, for the case 
v = 0.25. In Fig. 2 we plot trajectories of the 
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Figure 1 Coordinate system for axially symmetric point 
loading P. Expressions for the stress components 
indicated are given in the Appendix. 

three principal normal stresses, O-ll , o"22 , 0`33; that 
is, curves whose tangents indicate the directions 
of the principal stresses at each point. The three 
families of  trajectories are labelled such that 
0`11 ~> 0`23 ~> 0`aa nearly everywhere in the field. 
In Fig. 3 we plot contours of these principal 
stresses; the curves represent polar functions 
Rii(r obtained from Equation 1 at a~, = con- 

;( 
Figure 2 Half-surface view (top) and side view (bottom) 
of stress trajectories in Boussinesq field. Plotted for 
v = 0.25. 
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stant, and accordingly indicate the distribution of  Co} 

the principal stresses. Both  0-11 and a33 are 
contained within planes o f  symmetry th rough  the 
normal  load axis, with cr n everywhere tensile, 
0-z3 everywhere compressive. 0-22 is a ' hoop  stress', -,/2 
tensile within a conical region ~ < 51.8 ~ below 
the indenter and compressive outside this region. 
The relative magnitudes of  the three principal 
normal  stresses are shown to better advantage in 
Fig. 4a, in which just  the angular function o f  
Equat ion 1 are plotted. Similar plots are given 
for  the max imum principal shear stress and 
hydrostat ic  compression in Fig. 4b. (It is noted 
that  0-3~ actually exceeds 0-22 in a shallow surface 
region ~ > 77.2 ~ whence O"12 replaces 0-13 as the (b) 

maximum shear stress.) 
I t  would thus appear  that, given favourable 

initiation conditions, the tensile componen t  o f  
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Figure 3 Contours of principal normal stresses (a) 
an; (b) cr2~; (c) cr38 in Boussinesq field, shown in plane 
containing contact axis. Plotted for v = 0.25. Unit of 
stress is P0, contact "diameter" (arrowed) is 2a 4c~ (see 
Equations 1 to 3). Note sharp minimum in an and zero in 
cr2~, indicated by broken lines in (a) and (b) respectively. 
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Figure 4 Angular variation of principal stress components 
in Boussinesq field, plotted in terms of dimensionless 
functionf(~) (Equation 1). (a) Principal normal stresses, 
en, cr22, cr33; (b) maximum principal shear stress, crla or 
a12 (broken line), and hydrostatic compression, p. 
Plotted for v = 0.25. 

the point-indentation field might  well be 
sufficiently large to sustain a brittle crack. In  this 
context the value o f  Poisson's  ratio becomes an 
impor tant  consideration. Whereas the maximum 
principal shear and hydrostatic compression are 
insensitive to variations in this term, the same is 
not  true of  the tensile stress; indeed, at v = 0.5 
the tensile component  disappears completely. 
As it turns out, over the range u = 0.2 to 0.5 
materials generally tend to vary f rom highly 
brittle to highly ductile [1 ]; our chosen value o f  
v = 0.25 above thus lies toward the brittle end 
of  the spectrum, as required. 

We should finally note that  the stress-field 
Equat ion 1 contains a singularity at the contact  
origin R = 0. The idealized picture o f  an 
applied load supported by a point  contact  
strictly needs to be replaced by a model  which 
makes provision for indenter support  over a non- 
zero contact  area. Physically, one envisages a 
mechanism of  load redistribution in which the 
intense stresses in the immediate vicinity of  a 
sharp indenter are relieved by the operat ion o f  
nonlinear, irreversible deformation processes. It  
becomes convenient to represent the scale of  the 
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contact zone by some characteristic dimension a, 
such that the mean contact pressure may be 
written p o  = l ~ / o ' a  2 , (2) 
where e~ is a dimensionless constant determined 
by indenter geometry. Then division of Equation 
2 into Equation 1 suitably normalizes the field 
parameters; 

o . l p o  = ~ (a l R )2  [~j(~)]v. (3) 
(For a pointed indenter which leaves a geo- 
metrically similar impression in a homogeneous 
specimen at all loads, the mean indentation 
pressure remains invariant and accordingly 
provides a measure of the hardness of the material 
[2].) Some feeling for the influence of this 
effective 'indenter-tip blunting' on the field may 
be gained from Fig. 5, where the elastic stress 
term ~00 along the contact axis is plotted for both 
Boussinesq point loading and Hertzian circular 
contact loading [3]; here we take a to be the 
contact radius, giving c~ = 1 in the above 
equations. It is evident that the representations 
of Figs 2 to 4 retain their validity only at 
distances far removed from the contact zone, i.e. 
R >> a (St. Venant's principle). 

3. Microfracture geometry 
Observations have been made of indentation- 

induced microcracking under a wide range of 
experimental conditions in an attempt to 
establish a general pattern of behaviour [4]. 
Materials investigated include silicon, quartz, 
fused silica, soda-lime glass, and others. The 
pointed indenters, all diamond, ranged from those 
used in standard hardness testing, e.g. Vickers 
pyramid and Knoop, to specially ground cones. 
Specimens were prepared in slab-like form, with 
their test surfaces finely polished. Commercial 
testing machines, viz. Zwick Hardness Testing 
Machine (0-100N) and Instron Universal Testing 
Machine (0-1000N), were used to load the 
indenter onto the specimen. Microscopic exa- 
mination of the cracking was carried out after 
and (whenever appropriate) during the indenta- 
tion process. The tests were mainly conducted in 
ordinary laboratory atmosphere, but a small 
proportion were conducted in contrived environ- 
ments. 

Although the microfracture geometry observed 
showed many variants, a general pattern did 
emerge. We describe the essential features of this 
pattern with reference to the schematic represen- 
tation in Fig. 6, delaying discussion of any 
complications for the present. The sequence 
depicts one complete loading and unloading 
cycle: 

%e/po 

- o- o5o, - o.  o25, o o.  ?25 o. 050 

Hertz 

2 

I 
IO 

Figure 5 Comparison plot of Ooo(Z) stress term for Boussinesq and Hertzian fields. Plotted for v = 0.25. Note 
divergence of curves in vicinity of contact zone (at z -~ 0, ~ -+ oe in the Boussinesq field, e00 ~ - 1.125 P0 in the 
Hertzian field). 
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Figure 6 Schematic of vent crack formation under point 
indentation. Median vent forms during loading ( + )  half- 
cycle, lateral vents during unloading ( - )  half-cycle. 
Fracture initiates from deformation zone (dark region). 
See text. 

(a) Initial loading The sharp indenter induces a 
zone of irreversible deformation about the 
contact point. The size of this zone increases with 
load, according to Equation 2 with P0 = con- 
stant. 

(b) Critical zone formation At some critical 
indenter load a crack suddenly initiates below the 
contact point, where the stress concentration is 
greatest. This crack, commonly termed the 
median vent, lies on a plane of symmetry in the 
applied field, the specific 0-orientation of which 
depends on such factors as indenter geometry 
and crystal anisotropy. 

(c) Stable crack growth Increasing the load 
causes further, stable extension of the median 
vent. 

(d) Initial unloading The median vent begins to 
close (but not heal). 

(e) Residual-stress cracking Relaxation of 
deformed material within the contact zone just 
prior to removal of the indenter superimposes 
intense residual tensile stresses upon the applied 
field. Sideways-extending cracks, termed lateral 
vents, begin to appear. 

(f) Complete unloading Lateral vents continue 

Figure 7 Scanning electron micrograph of Knoop impres- 
sion in quartz (0001) surface. Section obtained by 
indenting across a fortuitous hairline crack in the speci- 
men, and subsequently propagating the crack through the 
material. Note deformation zone immediately below 
surface impression, and associated vent pattern. Note also 
that  lateral Vents show wider residual interface separation 
than median vent. Indenter load 2 N, width of field 100 
]~m. 

to extend, and may cause chipping. 
These general features are clearly evident in the 
micrographs of Figs. 7 and 8. The effect of 
reloading the indenter onto the impression is to 
close the lateral vents, and simultaneously to 
reopen the median vents. 

It can be readily argued on thermodynamic 
grounds that the ultimate history of a brittle 
fracture in an elastically loaded body is pre- 
determined by the tensile stress field before 
propagation has even begun [5]. This type of  
argument has a particularly useful application in 
the general elastic contact problem, as has been 
demonstrated in detail for the growth of a cone 
crack in the Hertzian field [6]. Essentially, a 
crack, once initiated, will at any point tend to 
propagate along trajectories of lesser principal 
normal stresses, thereby maintaining near- 
orthogonality to a major tensile component. It 
follows that a crack initiated directly below the 
point of a sharp indenter will tend to grow 
straight downward along the axial a3a trajectory 
(Fig. 2), as depicted in Fig. 6b and c, orthogonally 
to the tensile stress or11 = cr22 = ~00 at r = 0 (Fig. 
4). The same crack will also tend to expand 
sideways in a plane 0 = constant along the all 
trajectory, orthogonally everywhere to the hoop 
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Figure 8 In situ photographs of Vickers indentation in 
soda-lime glass, taken in transmitted light. Specimen 
loaded to (a) 250 N, (b) 500 N, then unloaded to (c) zero. 
Note evidence in (b) for "breakthrough" of main median 
vent to surface, and for presence of second median vent 
(dark segment) inclined to line of vision. Width of field 
11 ram. 

stress ~r22, but is likely to be restricted in this 
sideways growth by the compressive lobes at 
q~ > 51.8 ~ in the ~ field (Fig. 3b). These pre- 
dictions accord well with the observed median 
vent profile shown in the micrograph of Fig. 8a. 
Thus, as long as the conditions of crack growth 
remain well defined, it would appear that we 
have the basis for a standard fracture mechanics 
analysis of the problem. 
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Before proceeding to this end, however, it is 
well to indicate briefly some of the observed 
complications in the crack pattern which 
might be expected to impose limitations on any 
quantitative analysis: 

(i) In poorly prepared specimens the premature 
formation of Hertzian-type cracks (Fig. 9a) may 
partially suppress initiation of the median vent. 
This occurs when a surface flaw in the highly 
tensile 'skin' layer outside the contact area (Fig. 
3a) becomes critical before the nucleation centre 
within the deformation zone itself, thence flaring 
downward and outward into a truncated near- 
cone fracture delineated by the ~2 and %~ stress 
trajectories (Fig. 2) [6]. The crack pattern 
accordingly becomes more a function of surface 
history than of inherent deformation properties 
of the material. In most instances, due attention 
to indenter sharpness and specimen polishing 
was enough to prevent the incidence of such 
spurious cracking. 

(ii) Further spurious cracking may eventuate 
under certain indenter-specimen interface con- 
ditions, particularly with tests on glass in water. 
The median vents are then ill-formed, and some- 
times do not appear at all. In such cases bundles 
of splinter-like cracks tend to emanate from the 
deformation zone, and propagate stably down- 
ward along ~33 trajectories inclined to the contact 
axis (Fig. 2). 

(iii) In many situations geometrical factors 
favour the formation of more than one median 
vent beneath the indenter. For  instance, the 
sharp edges of a Vickers pyramid tend to initiate, 
in isotropic materials, mutually orthogonal, 
intersecting vents along the diagonals of the 
impression. This is seen in Fig. 8b. In a material 
such as monocrystalline lithium fluoride, on the 
other hand, the strong tendency to 'easy 
cleavage' on low-index planes becomes a 
dominant factor in determining vent orientations 
[7]. 

(iv) Discontinuities in the load-displacement 
characteristic are observed during indentation. 
Apart from an initial, small discontinuity at first 
appearance of the median vents, other, larger ones 
become apparent in advanced stages of growth as 
the sides of the vents suddenly break through the 
restraining compressive stress lobes to intersect 
the free surface. This 'breakthrough' accounts 
for the radial cracking commonly observed on 
heavily indented specimens (Fig. 9b). 

(v) The lateral vents show even more complex 
geometrical behaviour than the median vents 
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Figure 9 Residual crack patterns on indented silicon (1 1 1) surfaces. Conical indenter, included angle 160 ~ 
(a) Interference contrast micrograph, showing trace of near-cone crack; indenter load 20 N; width of field 100 txm; 
(b) interference fringe micrograph, showing traces of median vent cracks; indenter load 100 N; width of field 300 ~m. 
Note deformation at centre of each indent. 

(Fig. 8c). This type of cracking may occur 
regardless of  whether the threshold for median 
vent initiation is exceeded, thereby demonstrating 
the vital role of the ill-defined residual stress 
system associated with the unloaded deforma- 
tion zone. 

(vi) The overall crack pattern is characterized 
by a certain time dependence, as manifested by 
the effects of  rate of loading and unloading, 
nature of  environment, etc. The observed 
behaviour appears to be consistent with the 
known enhancing effects of  water (even in small 
traces) on both microcrack growth [8] and 
deformation processes within the hardness zone 
[9]. However, the effect is second order in this 
investigation, amounting to an increase of  no 
more than a few percent in the size of  the median 
vents after several min duration of applied 
load. 

4. Fracture mechan ics  of median vent  
We turn now from the question of crack geometry 
to the question of crack stability. In particular, 
we seek to quantify the scale of the micro- 
cracking in terms of the applied loading. 
Standard analytical 'fracture-mechanics' tech- 
niques are particularly useful here [5]. In 
principle, fracture mechanics should be capable 
of providing formal solutions for crack pro- 

pagation in any specifiable stress field; however, 
in reality only the simplest crack configurations 
are mathematically tractable. Accordingly, bear- 
ing in mind the above-mentioned complicating 
features in the crack pattern, we can hope to go 
no further than a first-approximation treatment 
of the growth of a well-behaved median vent. 
Even then, gross simplifying assumptions must 
be introduced into the description of the crack 
evolution. 

We begin by seeking a geometrical representa- 
tion of the median vent crack for which a 
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Figure 10 Fracture mechanics model for analysis of 
median vent propagation. Heavy line represents the crack 
profile (characteristic dimension c), broken lines the stress 
contours, and shading lines the deformation zone 
(characteristic dimension z0). (a) Penny-shaped represen- 
tation; (b) straight-fronted analogue. 
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standard fracture-mechanics solution is 
available. Our aim is to obtain an expression for 
the stress- intensi ty  f a c t o r  K (which gives a 
measure of the intensity of the stress field in the 
near vicinity of the crack tip) in terms of the 
indenter load P and characteristic crack dimen- 
sion c (Fig. 10). Here it is of interest to compare 
solutions for two plane-crack configurations, the 
straight-fronted edge crack (with c the crack 
length) and the penny-shaped internal crack 
(with c the crack diameter). In a homogeneous 
stress field the stress-intensity factor for the 
second configuration is simply ,/2fir times that 
for the first [5]; for the more general, inhomo- 
geneous stress field, however, a suitable solution 
exists only for the straight-fronted crack. Thus 
the first step in establishing a model of the vent 
crack might be to regard the contours of prior 
tensile stress as a family of circles having a 
common plane 0 = constant and common 
surface tangent at R = 0 (Fig. 3b), and the 
crack profile to be coincident with one of these 
circles (Fig. 8a). Then the second step would be 
to proceed by analogy with the homogeneous 
stress case, and to approximate the stress- 
intensity factor for the circular crack by ~/~./~r 
times that for the straight-fronted crack; the 
appropriate expression is [5] 

K = ~ 2  <2 (;)1/2 I~ %~(z)dz  (c--7 -- z--~/= } (4) 

with %~,(z) the relevant stress along the contact 
axis. 

However, as already noted in Fig. 5, the stress 
distribution becomes uncertain as one 
approaches the contact zone: indeed, direct 
substitution of the Boussinesq field solution 
%z(z)  = aoo(Z) (Appendix) into Equation 4 gives 
rise to an infinity in K. To overcome this 
difficulty we use the expedient of a 'cut-off 
depth', z 0 say, as a lower limit for the integration; 
this parameter may then be taken as a charac- 
teristic dimension of the deformation zone (Fig. 
10), within which any tensile stresses might 
reasonably be expected to relax to zero. Equation 
4 accordingly modifies to 

{1 - 2v'~ [c dz 
X = \ ~ /Pcl /2 .~o z2(c ~ - -  z2)1/2" (5) 

For most brittle materials, it is found that the 
median vent extends well below the damage 
region (Fig. 7), i.e. c >> z 0. In this approximation, 
Equation 4 reduces to 

K = ( 1 -  2v)P/21/2rrS/~Zo el/2 . (6) 
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We may now make use of the geometrical 
similarity of the deformation zone (Section 2) 
to determine the manner in which z 0 varies with 
load. In conjunction with Equation 2 we write 

z o = fia = flp1/2/(o~'n'po)a/2 , (7) 

where/3 is a dimensionless factor determined by 
zone geometry. Equation 6 then becomes 

K = f (1 - 2v ) (~P~ 
2U~r=/3 j (P)a/~. (8) 

From here it is a simple step to a fracture 
criterion [5]. We compute the crack-ex tens ion  

force ,  defined for plane-strain conditions by 

G = (1 - v2)K~/E. (9) 

Combining Equations 8 and 9 gives 

G = {(1 - v 2) (1 - 2v)=c~po'~ P 
g#/3  J 7 (10) 

For growth under equilibrium conditions the 
driving force for the crack must just balance the 
resisting force (Griffith condition); that is, 

G = 2 r ,  (11) 

where F is the f rac ture  surface energy.  Equating 
equations 10 and 11 gives finally, 

P 4rH/32FE 
c = (1 - v ~) (1 - 2v)%~po (12) 

The crack length is thus predicted to extend 
stably in proportion to the load. 

500 m • o 
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o 200 "I~ = 

IOO o Oc~A 

o o:s i?o - t.'~ 
Depth of median vent, c/ram 

Figure 11 Theoretical plot (full line, Equation 12) and 
experimental plot (data points, optical observations with 
each symbol representing a different crack) of P(c) for 
well-behaved median vent cracks in soda-lime glass 
indented with Vickers pyramid. 
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It is of interest to evaluate this relationship for 
some specific system, say for Vickers pyramid 
indentations on soda-lime glass (e.g. Fig. 8). 
We take the following typical values: ~ = 2/7r 
(with a half-diagonal of indentation), /3 = 2 
(taken as ratio depth/half-diagonal of deforma- 
tion zone, Fig. 7), E = 7 x 101~ Nm -2, v = 0.25, 
F = 4 Jm -~ (double-cantilever datum [10]), 
P0 = 6.5 x 109 Nm -~ (direct measurement of 
contact under load). Insertion into equation 12 
gives P/c = 4.4 x 105 Nm -1. This result is 
plotted in Fig. 11 as the full line. Also plotted in 
Fig. 11 are data points representing direct 
observations of crack length as a function of 
applied load for several well-behaved vents. 
Agreement between theory and experiment is 
better than order-of-magnitude over the range 
of values covered, which is more than satisfac- 
tory considering the uncertainties in the indenta- 
tion model. 

5. Discussion 
Our treatment above provides a descriptive basis 
for the more general features of point-indenta- 
tion microfracture patterns in brittle solids. The 
formation of median vents on loading and lateral 
vents on unloading follows as a natural adjunct 
to the irreversible deformation processes which 
give rise to the residual hardness impression. Yet 
because the ultimate crack propagation depends 
on the stress situation over a distance large 
compared with the scale of the contact zone,we 
have been able to analyse the median vent 
mechanics in terms of the Boussinesq elastic 
field equations for point loading. This has given 
us, through a knowledge of the material con- 
stants in Equation 12, a means of predicting a 
priori the depth of fracture damage in terms of 
given applied loading conditions: conversely, 
it has given us a means of inferring the loading 
history from the measured depth of cracking. 
Such information can be of great value in the 
evaluation of surface fragmentation and cutting 
processes. Or again, given both loading situation 
and crack depth, we have the basis of a simple 
method for estimating the fracture surface 
energy: in the case of opaque solids, e.g. hard 
metals [11, 12] or even rocks, the extent of 
cracking may be quantified in terms of the 
surface traces of welI-developed median vents 
[131. 

On the other hand, our fracture mechanics 
analysis does not extend to the lateral vents. To 

analyse this phase of the microfracture process 
we would need to have detailed knowledge of 
the residual stress field imposed by the relaxing 
deformation zone on unloading. This presents 
itself as a formidable problem, requiring for a 
start a complete description of the mechanics of 
zone formation itself. Nevertheless, if we were to 
concern ourselves less with the question of the 
absolute lengths of the lateral vents, and more 
with the question of the degree of chipping/f  
the vents intersect the surface, then some useful 
information might be obtained by once again 
invoking geometrical similarity. Thus, on the 
assumption that the volume of the potential chip 
must scale with that of the residual impression 
(Fig. 6f), we write V = ~cam a = (K21a/aTrpo) a/~ 
Pm ai2 (using Equation 2), where K is a dimension- 
less constant to be determined empirically and 
the subscript m designates values at maximum 
indentation. This simple-minded approach might 
indeed be used to form the basis for a working 
model in certain surface fragmentation pro- 
cesses, where individual chipping events are 
represented as miniature point indentations [14]. 

It should finally be emphasized that in 
bypassing consideration of the micromechanisms 
within the irreversible deformation zone we have 
left unanswered many important questions 
concerning the initiation of the vent cracks. In 
particular, how do such variables as defect 
mobility (dislocations, point defects), nature of 
environment, load rate, etc. determine the critical 
conditions for crack nucleation ? The answers to 
such questions may hold the key to the ultimate 
control of the micro-fracture patterns in a given 
brittle system. The practical implications are 
important here: for example, in glass-cutting, 
where smooth, damage-free edges are required, 
it is essential to propagate a single, well-formed, 
trailing median vent beneath and behind the 
moving cutting wheel, and simultaneously to 
suppress the formation of lateral vents or other , 
spurious cracks; conversely, in fragmentation 
processes, where surface chipping needs to be 
optimized, it is the lateral vent configuration 
which must be preferentially developed. 

Appendix 
Solutions for the stress field in an elastic half- 
space under normal point loading, first derived 
in 1885 by J. Boussinesq, are available in 
standard texts on elasticity theory [15]. In 
terms of the curvilinear coordinates of Fig. 1 we 
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have the fol lowing componen t s ;  

P f{1-2V~sec2~ sin2q~} 0 " ~ - ~ R  2 ~ \  4 ] - ~ c ~  

P - � 8 9  ooo_- 

~ - ,~R~ - ~ c o s 3 ~  (A1) 

a~z = ~ - ~  _ 3 cos ~ ~ sin q~ 

~rO = r = O .  

Suitable  tensor  t r ans format ions  provide  the 
direct ions and  magni tudes  of  the pr inc ipa l  stress 
components .  Two of  the pr incipal  no rma l  
stresses, a l l  and  %z, are conta ined  in the 
symmet ry  p lane  0 = constant ,  their  angles wi th  
the specimen surface given by  

tan  2~ = 2cr~/(~r~ - ~r~0. (A2) 

The th i rd  pr inc ipa l  no rma l  stress, a22, is every- 
where perpendicu la r  to the symmet ry  plane.  The 
pr incipal  direct ions are  label led such tha t  
a l l  ~ cr22 ~ a33 generally.  We  then have (not ing 
tha t  a ~  ~< 0 for  all 0 ~< q~ ~< 7r/2) 

O"21 = O'rr sin2~ -k 0-zz cos2c~ -- 2crrz sin c~ cos c~ 

a22 = ~r00 (A3) 
a33 = ~r~ cos2~ + cr~ sin2c~ + 20-~ sin ~ cos c~. 

The pr incipal  shear stresses are accordingly  given 
by  

O"13 = 1(O'11 - -  0"33) 

cra~ = �89 - o'22 ) (A4)  

0"23 = �89 - ~ 3 ~ ) ,  

incl ined at  ~r/4 to the pr incipal  directions.  Last ly,  
the magni tude  of  the componen t  of  hydros ta t ic  
compress ion  is 

P = - �89 (0"n + ~r22 + (r33) �9 (A5) 
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